Effect of Obesity on Spirometry Among Non-smoking Adults
Effect of Obesity on Spirometry Among Non-smoking Adults
This is a cross sectional study conducted at the pulmonary function laboratory of king Abdulaziz medical city, Riyadh, Saudi Arabia. The subjects were selected from the adult male and female population (aged 18 to 75 years) of healthy volunteers or hospital visitors or relatives of patients visiting the hospital. The subjects who accepted the invitation underwent a medical evaluation including a meticulous and thorough medical history, and a full physical examination. Subjects were Saudis lifetime nonsmoker for either cigarettes or water pipes (Shisha) with a weight ranges from 40 kg to 120 kg and height range from 140 cm to 190 cm. They had no history of any respiratory complaints like cough, shortness of breath, wheezes or fever or history of upper respiratory tract infection in the past 4 weeks or history of respiratory diseases such as pulmonary tuberculosis or asthma and not having history of cardiac or thoracic surgery or features suggestive of cardiac or lung disease or evidence of chest deformities or serious medical conditions, and not having worked in environments with a high concentration of dust or pollution.
The sex, age, standing height and body weight of all subject met the inclusion were recorded. The weight was measured with the subjects wearing light clothing and barefoot on a SECA weighting scale (Hamburg, Germany). The standing height was measured without shoes with the subject's back to a vertical backboard. Both the heels were placed together, touching the base of the vertical board. Normal weight and obesity were defined on the basis of WHO cutoffs. The spirometry tests were conducted using a Micro-Loop Viasys Healthcare (Ireland). The spirometry device was calibrated with JAEGER calibration pump using 3.0 L syringe at three flow rates, in accordance with the manufacturer's recommendations, before each day's testing and after every few hours of testing. All Subjects underwent spirometry tests, using techniques recommended by the American Thoracic Society (ATS). The spirometry test was done in the morning by at least two trained qualified technicians. The subjects underwent the spirometry test in the sitting position, wearing a nose clip. Uniformity of spirometry test was assured by using the same device brand for all the subjects. The validity of the test was verified according to the ATS recommendations. The spirometry tests measured were the forced vital capacity (FVC), forced expiratory volume in one second (FEV1), peak expiratory flow rate (PEFR) and forced mid-expiratory flow (FEF25–75%). In addition to these measured parameters, the ratio of FEV1 to FVC (FEV1/FVC, expressed as a percentage) was calculated. The subjects were divided into two groups according to their BMI. The first group consisted of non-obese (normal body weight) subjects with BMI of 18 to 24.9 kg/m2 and the second group consisted of obese subjects with BMI of 30 kg/m2 and above
The statistical analysis was performed using the SPSS 18 software (SPSS, Chicago). Descriptive statistics were calculated for the total study sample, for males and females and for both groups using means and standard deviations. The variables were expressed as the means and standard deviations, and p value less than 5% was considered statistically significant. Independent samples test was used to compare the spirometry results of obese to non-obese subjects. The Institutional Review Board at King Abdullah International Medical Research Centre (KAIMRC) approved the study and written informed consent was obtained from all subjects.
Methods
This is a cross sectional study conducted at the pulmonary function laboratory of king Abdulaziz medical city, Riyadh, Saudi Arabia. The subjects were selected from the adult male and female population (aged 18 to 75 years) of healthy volunteers or hospital visitors or relatives of patients visiting the hospital. The subjects who accepted the invitation underwent a medical evaluation including a meticulous and thorough medical history, and a full physical examination. Subjects were Saudis lifetime nonsmoker for either cigarettes or water pipes (Shisha) with a weight ranges from 40 kg to 120 kg and height range from 140 cm to 190 cm. They had no history of any respiratory complaints like cough, shortness of breath, wheezes or fever or history of upper respiratory tract infection in the past 4 weeks or history of respiratory diseases such as pulmonary tuberculosis or asthma and not having history of cardiac or thoracic surgery or features suggestive of cardiac or lung disease or evidence of chest deformities or serious medical conditions, and not having worked in environments with a high concentration of dust or pollution.
The sex, age, standing height and body weight of all subject met the inclusion were recorded. The weight was measured with the subjects wearing light clothing and barefoot on a SECA weighting scale (Hamburg, Germany). The standing height was measured without shoes with the subject's back to a vertical backboard. Both the heels were placed together, touching the base of the vertical board. Normal weight and obesity were defined on the basis of WHO cutoffs. The spirometry tests were conducted using a Micro-Loop Viasys Healthcare (Ireland). The spirometry device was calibrated with JAEGER calibration pump using 3.0 L syringe at three flow rates, in accordance with the manufacturer's recommendations, before each day's testing and after every few hours of testing. All Subjects underwent spirometry tests, using techniques recommended by the American Thoracic Society (ATS). The spirometry test was done in the morning by at least two trained qualified technicians. The subjects underwent the spirometry test in the sitting position, wearing a nose clip. Uniformity of spirometry test was assured by using the same device brand for all the subjects. The validity of the test was verified according to the ATS recommendations. The spirometry tests measured were the forced vital capacity (FVC), forced expiratory volume in one second (FEV1), peak expiratory flow rate (PEFR) and forced mid-expiratory flow (FEF25–75%). In addition to these measured parameters, the ratio of FEV1 to FVC (FEV1/FVC, expressed as a percentage) was calculated. The subjects were divided into two groups according to their BMI. The first group consisted of non-obese (normal body weight) subjects with BMI of 18 to 24.9 kg/m2 and the second group consisted of obese subjects with BMI of 30 kg/m2 and above
The statistical analysis was performed using the SPSS 18 software (SPSS, Chicago). Descriptive statistics were calculated for the total study sample, for males and females and for both groups using means and standard deviations. The variables were expressed as the means and standard deviations, and p value less than 5% was considered statistically significant. Independent samples test was used to compare the spirometry results of obese to non-obese subjects. The Institutional Review Board at King Abdullah International Medical Research Centre (KAIMRC) approved the study and written informed consent was obtained from all subjects.
Source...