Estimates of Child Deaths Prevented From Malaria Prevention
Estimates of Child Deaths Prevented From Malaria Prevention
Malaria is a major contributor to child mortality in sub-Saharan Africa. Fortunately, vector control through insecticide-treated mosquito nets (ITNs) and malaria prevention during pregnancy through ITNs and intermittent prevention therapy (IPTp), have been shown to significantly reduce the burden of malaria from carefully conducted trials. A recent analysis of 29 national-level cross-sectional datasets in Africa that assessed the association between ITN household possession and all-cause post-neonatal child mortality showed the effect of ITNs under routine programme conditions to be nearly identical to, if not greater than, the efficacy observed in trials.
Since the launch of the Roll Back Malaria Partnership (RBM) in 1998, many countries have worked to expand coverage of these proven malaria prevention interventions. Funding from external agencies for malaria control in Africa has increased by a factor of 40 since 2000, reaching more than US$1.47 billion in 2009. As a result of both increased funding from external agencies and increased attention to malaria by national governments, national coverage levels of malaria prevention interventions, namely ITNs and IPTp, have increased dramatically across sub-Saharan Africa. This unprecedented effort to scale-up malaria interventions is likely improving child survival and will likely contribute substantially to meeting Millennium Development Goal (MDG) 4 (Target 1) to reduce the < 5 mortality rate by two thirds between 1990 and 2015.
Unfortunately, vital registration data are generally not available in most malaria-endemic countries for ascertaining changes in malaria-specific and all-cause child mortality. Other methods for measuring child mortality in Africa, such as demographic surveillance systems and household surveys, have serious limitations for producing timely trends in malaria mortality at the country level. Thus, real-time tracking of changes in child mortality, especially malaria-specific mortality, presents serious challenges.
Mathematical modelling has been recommended as a method to gain perspective into the possible impact of malaria interventions. Previous modelling estimates have suggested that approximately 691,000 all-cause child deaths could have been prevented in the year 2000 alone had universal coverage of ITNs been achieved, and 22,000 child deaths could have been prevented in 2000 had universal coverage of IPTp been achieved. Another cost-effectiveness modelling approach estimated that approximately seven million additional disability adjusted life-years (DALYs) could be averted by adding universal ITN coverage on top of universal access to malaria treatment with artemisinin-based combination therapy (ACT).
To estimate the impact that improved access to effective child survival interventions have on reducing child mortality, estimates of the relative reduction in child mortality of empirically proven child survival interventions have been linked to the population coverage of such interventions. This effort culminated in estimates of the impact of scaling-up interventions in The Lancet Series on Child Survival, Neonatal Survival, and Maternal and Child Under-nutrition. A central component to that work was the development of a model to estimate the reduction in child mortality that could be achieved with expanded coverage of effective child survival interventions. This model, now referred to as the Lives Saved Tool (LiST), has continued to be refined to allow retrospective estimation of deaths prevented by intervention scale-up. The use of LiST to retrospective model estimates of neonatal and child deaths prevented from the scale-up of packages of child survival interventions have been shown to yield reasonably reliable estimates when compared to measured changes in mortality across various settings, including neonatal mortality in South Asia, all-cause < 5 year child mortality from a broad package of child health interventions in West Africa, and all-cause < 5 year child mortality in Bangladesh.
It is known that the coverage of malaria prevention interventions, especially vector control through ITNs, has increased dramatically over the past 10 years in Africa, with the bulk occurring since 2005. However, it remains unknown what impact this increased access to proven malaria prevention intervention has had on child mortality over the past decade. The LiST model was used to approximate the likely impact that malaria prevention intervention scale-up has had on child malaria mortality over the past decade (2001–2010) across 43 malaria-endemic countries in Africa. Estimates of the cost effectiveness of ITNs are estimated from 2006–2009 during the peak scale-up. The model was also used to estimate the potential number of malaria deaths that could be prevented from additional scale-up of malaria prevention interventions to the RBM universal coverage target of 100% from 2012 through 2015. Unfortunately, due to difficulties with the definition and matching coverage estimates of prompt treatment of childhood fevers with ACT to estimates of the efficacy of ACT at preventing child deaths, the current analysis does not include an estimate of the child deaths prevented from malaria treatment.
Background
Malaria is a major contributor to child mortality in sub-Saharan Africa. Fortunately, vector control through insecticide-treated mosquito nets (ITNs) and malaria prevention during pregnancy through ITNs and intermittent prevention therapy (IPTp), have been shown to significantly reduce the burden of malaria from carefully conducted trials. A recent analysis of 29 national-level cross-sectional datasets in Africa that assessed the association between ITN household possession and all-cause post-neonatal child mortality showed the effect of ITNs under routine programme conditions to be nearly identical to, if not greater than, the efficacy observed in trials.
Since the launch of the Roll Back Malaria Partnership (RBM) in 1998, many countries have worked to expand coverage of these proven malaria prevention interventions. Funding from external agencies for malaria control in Africa has increased by a factor of 40 since 2000, reaching more than US$1.47 billion in 2009. As a result of both increased funding from external agencies and increased attention to malaria by national governments, national coverage levels of malaria prevention interventions, namely ITNs and IPTp, have increased dramatically across sub-Saharan Africa. This unprecedented effort to scale-up malaria interventions is likely improving child survival and will likely contribute substantially to meeting Millennium Development Goal (MDG) 4 (Target 1) to reduce the < 5 mortality rate by two thirds between 1990 and 2015.
Unfortunately, vital registration data are generally not available in most malaria-endemic countries for ascertaining changes in malaria-specific and all-cause child mortality. Other methods for measuring child mortality in Africa, such as demographic surveillance systems and household surveys, have serious limitations for producing timely trends in malaria mortality at the country level. Thus, real-time tracking of changes in child mortality, especially malaria-specific mortality, presents serious challenges.
Mathematical modelling has been recommended as a method to gain perspective into the possible impact of malaria interventions. Previous modelling estimates have suggested that approximately 691,000 all-cause child deaths could have been prevented in the year 2000 alone had universal coverage of ITNs been achieved, and 22,000 child deaths could have been prevented in 2000 had universal coverage of IPTp been achieved. Another cost-effectiveness modelling approach estimated that approximately seven million additional disability adjusted life-years (DALYs) could be averted by adding universal ITN coverage on top of universal access to malaria treatment with artemisinin-based combination therapy (ACT).
To estimate the impact that improved access to effective child survival interventions have on reducing child mortality, estimates of the relative reduction in child mortality of empirically proven child survival interventions have been linked to the population coverage of such interventions. This effort culminated in estimates of the impact of scaling-up interventions in The Lancet Series on Child Survival, Neonatal Survival, and Maternal and Child Under-nutrition. A central component to that work was the development of a model to estimate the reduction in child mortality that could be achieved with expanded coverage of effective child survival interventions. This model, now referred to as the Lives Saved Tool (LiST), has continued to be refined to allow retrospective estimation of deaths prevented by intervention scale-up. The use of LiST to retrospective model estimates of neonatal and child deaths prevented from the scale-up of packages of child survival interventions have been shown to yield reasonably reliable estimates when compared to measured changes in mortality across various settings, including neonatal mortality in South Asia, all-cause < 5 year child mortality from a broad package of child health interventions in West Africa, and all-cause < 5 year child mortality in Bangladesh.
It is known that the coverage of malaria prevention interventions, especially vector control through ITNs, has increased dramatically over the past 10 years in Africa, with the bulk occurring since 2005. However, it remains unknown what impact this increased access to proven malaria prevention intervention has had on child mortality over the past decade. The LiST model was used to approximate the likely impact that malaria prevention intervention scale-up has had on child malaria mortality over the past decade (2001–2010) across 43 malaria-endemic countries in Africa. Estimates of the cost effectiveness of ITNs are estimated from 2006–2009 during the peak scale-up. The model was also used to estimate the potential number of malaria deaths that could be prevented from additional scale-up of malaria prevention interventions to the RBM universal coverage target of 100% from 2012 through 2015. Unfortunately, due to difficulties with the definition and matching coverage estimates of prompt treatment of childhood fevers with ACT to estimates of the efficacy of ACT at preventing child deaths, the current analysis does not include an estimate of the child deaths prevented from malaria treatment.
Source...