Go to GoReading for breaking news, videos, and the latest top stories in world news, business, politics, health and pop culture.

The OSTRC Questionnaire on Health Problems in Elite Athletes

109 1
The OSTRC Questionnaire on Health Problems in Elite Athletes

Methods

Recruitment


During the summer of 2011, the coaches of the Norwegian national teams in all candidate sports for the London Olympic or Paralympic Games were asked to provide a list of athletes who had the potential to qualify. The final list included 143 athletes, 142 of whom gave their consent to participate in the project. This included 116 Olympic candidates (54 male and 62 female) and 26 Paralympic candidates (15 male and 11 female). The Olympic sports in the study included archery (n=1), athletics (n=22), beach volleyball (n=6), boxing (n=2), cycling (n=12), handball (n=24), kayak (n=7), rowing (n=13), sailing (n=8), shooting (n=5), swimming (n=10), taekwondo (n=3), weightlifting (n=1) and wrestling (n=2). The Paralympic sports included archery (n=1), athletics (n=1), boccia (n=1), cycling (n=2), equestrian (n=4), sailing (n=4), shooting (n=7), swimming (n=3) and table tennis (n=3). The medical personnel that participated in classifying and diagnosing illness and injuries included all the doctors (n=7) and physiotherapists (n=13) who were selected to travel with the Norwegian athletes to the Olympic or Paralympic Games. The study was approved by the Norwegian Data Inspectorate and reviewed by the South-Eastern Norway Regional Committee for Research Ethics. Informed consent was obtained from the athletes at the first registration.

Data Collection Procedure


Every Sunday for the duration of the project, we used online survey software (Questback V.9692, Questback AS, Oslo, Norway) to send all athletes an email linking them to an internet-based questionnaire on health problems, with an automatic reminder email 3 days later if needed (figure 1). Each Thursday, the project coordinator (BMC) compiled a report based on the questionnaire responses from that week and sent it to the relevant team medical staff. They were then expected to follow-up each case and, in addition to providing normal clinical management or advice to the athlete, to fill in a report classifying the type and diagnosis of each health problem. These reports were sent back to the project coordinator on a monthly basis.



(Enlarge Image)



Figure 1.



Diagram showing the procedures used to collect data on health problems.




The Oslo Sports Trauma Research Center (OSTRC) Questionnaire on Health Problems


We developed the Oslo Sports Trauma Research Center (OSTRC) Questionnaire on Health Problems based on the OSTRC Overuse Injury Questionnaire. The four key questions on the consequences of health problems on sports participation, training volume and sports performance as well as the degree to which they have experienced symptoms were modified to capture all types of health problems including illness and acute injuries (figure 2). If the athlete answered the minimum score for each of these questions (full participation without problems/no training reduction/no performance reduction/no symptoms), the questionnaire was finished for that week. However, if the athlete reported anything other than the minimum value for any question, the questionnaire continued by asking them to define whether the problem they referred to was an illness or an injury. In the case of an injury, they were asked to register the area of the body in which it was located, and in the case of an illness, they were asked to select the major symptoms they had experienced. For all types of problems, the number of days of complete time loss, defined as the total inability to train or compete, was also registered. Athletes were also asked whether or not the problem had been reported previously, whether the problem was already being treated (and by whom) and whether they had any further comments for their Olympic medical team. These three questions were included for use in the weekly reports rather than for epidemiological data collection purposes. Finally, athletes were asked whether the problem they had been referring to was the only health problem they had experienced during the preceding 7 days or whether they had experienced several problems. If they had only had one problem, the questionnaire was finished, whereas if they reported several problems, the questionnaire returned to the four key questions and repeated itself for each subsequent problem reported. The questionnaire logic is summarised in figure 3, and the complete OSTRC Questionnaire is available as an online supplement appendix 1.



(Enlarge Image)



Figure 2.



The four key questions asked at the beginning of the weekly online Oslo Sports Trauma Research Center (OSTRC) Questionnaire on Health Problems. If the athlete answered the minimum value in each of the four questions, the questionnaire was finished for that week.







(Enlarge Image)



Figure 3.



Diagram of questionnaire logic showing how the length of the questionnaire varied according to the number of health problems the athlete reported. Up to four health problems could be reported per week.




Classification and Diagnosis of Reported Problems


Team medical personnel were asked to classify each problem reported as an illness, acute injury or overuse injury, based on their clinical interview. In accordance with the International Olympic Committee surveillance system, health problems were classified as injuries if they were disorders of the musculoskeletal system or concussions. They were classified as illnesses if they involved other body systems, such as (but not limited to) the respiratory, digestive and neurological systems, as well as non-specific/generalised, psychological and social problems. Injuries were further subcategorised into overuse and acute injures. Acute injuries were defined as those whose onset could be linked to a specific injury event, whereas overuse injuries were those that could not be linked to a clearly identifiable event. The medical team was also asked to provide a specific diagnosis for each event. For illnesses, the International Classification of Primary Care, V.2 (ICPC-2) was used, and for injuries the Orchard Sports Injury Classification System, V.10 (OSICS-10), was used. The first tier of the OSICS-10 code was used to determine the location, and the second tier was used to determine the type. The first letter of the ICPC-2 code was used to determine the body system affected by illness.

At the conclusion of the project, the project coordinator manually went through each athlete's questionnaire responses and cross-checked all reported health problems with the classifications and diagnoses made by the medical team. All cases were checked twice for accuracy, and in 16 cases where information was missing or conflicting, medical personnel were contacted for clarification. In injury cases where the same diagnosis was interspersed with periods of apparent recovery, medical personnel were consulted in order to classify subsequent events as exacerbations of unresolved problems or recurrences of fully recovered problems (reinjuries), in accordance with the definitions outlined by Fuller et al. Illnesses were treated in a similar fashion, with repeated episodes of chronic conditions treated as a single case for the purposes of analysis.

Prevalence Calculations


Prevalence measures were calculated for all health problems, illnesses, injuries, overuse injuries and acute injuries for each week that the project was conducted. This was performed by dividing the number of athletes reporting any form of problem by the number of questionnaire respondents. The prevalence of substantial problems was also calculated for each of these measures, with substantial problems defined as those leading to moderate or severe reductions in training volume, or moderate or severe reductions in sports performance, or complete inability to participate in sport (ie, problems where athletes selected option 3, 4 or 5 in either Questions 2 or 3). All prevalence measures were also calculated for the four different subgroups of athletes: (1) team athletes (n=30), consisting of handball and beach volleyball players; (2) endurance athletes (n=53), consisting of athletes from cycling, kayak, rowing, swimming as well as the middle-distance and long-distance runners from athletics; (3) tactical/technical athletes (n=36), consisting of athletes participating in archery, boxing, sailing, shooting, taekwondo, weightlifting and wrestling, as well as the sprint and field athletes from athletics and (4) paralympic athletes (n=26). All prevalence measures were presented as averages, together with a 95% CI. Data from the first week the project was conducted were excluded from all calculations, as per our previous recommendations.

Severity of Health Problems


Each week, a severity score was calculated for all reported health problems based on an athlete's responses to the four key questions. The severity score was plotted in order to track the progression of each health problem, such as in the example shown in figure 4. The cumulative severity score was then calculated for each case by summing the severity score for each week that it was reported. The average weekly severity score was calculated by dividing the cumulative severity score by the number of weeks the problem was reported. The total amount of complete time loss was also calculated for each problem by summing the weekly reported time loss. For all the above calculations, recurrent problems were counted as the same event if they were deemed by the medical staff to be exacerbations of an unresolved injury or a chronic illness.



(Enlarge Image)



Figure 4.



Example of the severity score being used to track the consequences of three 'typical' health problems. The light grey area represents a mild overuse injury (cumulative severity score: 352), the dark grey area represents a short duration illness (91) and the area with diagonal lines represents a severe acute injury (1005).




Relative Burden of Illness, Overuse Injury and Acute Injury


The cumulative severity scores for all health problems were summed, and the proportion of the total number made up by illness, overuse injury and acute injury was determined. This was performed in order to estimate the relative burden of these different types of health problems.

Statistical Analyses


In order to analyse differences in the various prevalence measures between subgroups of athletes, Kruscal-Wallis non-parametric analysis of variance (ANOVA) tests were applied, using SPSS statistical software (SPSS V.18, IBM Corporation, New York, USA).

In order to analyse differences in the duration, cumulative severity and average weekly severity scores between different types of health problems, as well as between diagnosed and undiagnosed health problems, regression analyses were made. The repeated nature of measurements was taken into account by applying the robust option in the xtreg command in STATA statistical software (STATA V.12.0, StataCorp LP, Texas, USA). The significance level (α) was set at 0.05 for all tests.

As the original OSTRC questionnaire was developed for recording injury consequences, it was necessary to reanalyse the psychometric properties of the four key questions when they were applied to illnesses. In order to do this, all questionnaires that did not report an injury (n=3384) were analysed using SPSS software to determine internal consistency (Cronbach's α). A factor analysis was also performed using a principle component analysis extraction method. Additionally, in order to assess the effects of sampling less frequently, the primary outcome measures were recalculated using only information from every second and fourth questionnaires.

Source...

Leave A Reply

Your email address will not be published.